
PDradio
http://pdradio.iem.at

Georg Holzmann

Oct. 2005, Graz

PD Webradio is a self-regulating virtual radio station using a Content Manage-
ment System.
Users can listen to the music-stream, vote for songs they would like to hear, upload
their own music and listen to the comments of the automatic radio moderator.
The whole system is designed for the PD-community, a (not so small) group of
people using the realtime audio-, videosystem Pure Data1 to create their music.

1 concept

PD webradio is a self-regulating internet radio station for the Pure Data community.
Registered users can upload PD-related music and share them with the community.
At the beginning the whole system was made for study purposes only at the Institute of
Electronic Music and Acoustics (IEM) 2 in Graz, Austria, by Winfried Ritsch and Georg
Holzmann.

1.1 radio stream

Listerners of the PDradio can hear the latest Pure Data radioprogram.
Additional to the music there is an automatic radio moderator, who speaks a little bit about
the songs and the composers - in a very funny english.

1.2 interaction

If you want to hear specific songs you have the possibility to vote for them. After each vote a
new playlist will be generated and you can see it immediately in the browser.
As registered user you are allowed to upload your own songs as ogg or mp3 files.
With each song you should also upload additional metadata, which is only one text where you
can describe yourself, the song, contact information or whatever you want.
That text will be read by the automatic radio moderator before your song is played - so it
should be in a ”readable” english for the speech synthesizer.

1PD, aka Pure Data, by Miller Puckette and others: http://puredata.org
2Institute of Electronic Music and Acoustic, Graz: http://www.iem.at

1

http://pdradio.iem.at
http://puredata.org
http://www.iem.at

1.3 archive

All the songs and metadata are stored in the PDradio archive.
You can also download these files, but again only if you are registered.

1.4 license

The current license text looks as the following:

You are resplonsible for the content and you are not allowed to upload files prodected by
copyright laws! All files of the PDradio archive are downloadable for registered users and are

transmitted by the internet radio for free.
By clicking ”Upload file” you agree on all conditions of PDradio!

which is indeed a little bit ”incomplete”.
So we might switch to a specific Creative Commons License 3 in future.

2 technical realisation

PDradio is implemented with Open-Source software and runs on a Linux server with Zope/-
Plone 4.
The audio streaming, speech synthesis, radio-moderator, DJ, ... is implemented in PD and
Python for the communication to plone.

2.1 CMS System

As already mentioned we use an Apache server on a Debian stable Linux system with Zope.
Plone is built using Zope, an object oriented application server. The language that drives
Zope and Plone is Python 5, so it is easy to extend the system with new ”Products” written
in Python.
The Plone-portal, running in Zope, does all the work which is needed for member management
and registration of new users, uploading/downloading files (with the Product LocalFileSys-
temNG), etc.

2.2 the webinterface

In the webinterface the user can see a link to the radio stream, the current track, the actual
playlist and a list of all available songs with links to vote for each one.
We made a new Product PdControl for Plone, which consists of a Python-script and a HTML-
template. This Product manages the user-interaction and communicates with the sound engine
(PD).
As an example you can see the template code to display the current track, which is played at
the moment:
calling the Python method get playing info (see table 1) is just calling the link here/get playing info
(which results in http://pdradio.iem.at/radio/get_playing_info as absolute URL).

3Creative Commons: http://www.creativecommons.org
4Plone: http://www.plone.org , Zope: http://www.zope.org/
5Python: http://www.python.org

2

http://pdradio.iem.at/radio/get_playing_info
http://www.creativecommons.org
http://www.plone.org
http://www.zope.org/
http://www.python.org

<u> cur rent t rack : </u>
<div c l a s s=”PdContro lFi le ”

t a l : content=”here / g e t p l a y i n g i n f o ”>
cur rent song

</div>

Table 1: HTML template example

In table 2 you can see the called Python method, which is part of the class PdControl. It
makes a connection to the sound engine (if not already open) and returns the current track.

def g e t p l a y i n g i n f o (s e l f) :
””” get the cur rent song from PD. ”””

s e r v e r = s e l f . connect ()
song = se rv e r . g e t p l a y i n g i n f o ()
return song

Table 2: corresponding Python code

2.3 XML-RPC

The communication between the webinterface and the sound engine is managed using the
XML-RPC protocol 6, a remote procedure call between various progamming languages using
HTTP as the transport and XML as the encoding.
The XML-RPC server is running in the sound engine and responds to calls from the webinter-
face.

2.4 the sound engine

The sound engine is implemented in PD and is responsible for the program logic, speech
synthesis (radio moderator), soundfile player and the audio streaming (see figure 1).

2.4.1 program logic

All the program logic (ranking of the songs, current playlist, next song, scanning for new files)
is again implemented in Python, but embedded in PD via the pyext7 external.
Also the XML-RPC server is running in that pyext external in a separate thread, so the
information of the webinterface can finally be accessed in PD.
The ranking algorithm is rather simple:
If a user votes for a song, the ranking increases by one. Always the song, with the highest
ranking is on top of the playlist (or if there are more songs with the same ranking it will be
choosen randomly). When the song is playing its ranking is reseted to 0.

6XML-RPC: http://www.xmlrpc.com/
7pyext by Thomas Grill, http://www.grrrr.org

3

http://www.xmlrpc.com/
http://www.grrrr.org

Figure 1: main PD patch of the sound engine

2.4.2 radio moderator

With each song also additional metadata is uploaded and is read by the automatic radio
moderator.
For speech synthesis we use Flite (festival-lite) and its wrapper for PD 8.
There are also additional expletive words inbetween metadata and songs, which are changing
all the time, so the moderator sounds a little bit more ”natural” or ”intelligent”.

2.4.3 post processing, streaming

The post processing of the uploaded ogg or mp3 audio files consists of a simple limiter and
compressor combination.

8Flite: http://fife.speech.cs.cmu.edu/flite and PD external by Bryan Jurish

4

http://fife.speech.cs.cmu.edu/flite

Finally an icecast2 server 9 is streaming the resulting audio and the speech of the moderator.

3 future plans

Some ideas for the future, to keep the project alive:

• switch to an ogg stream

• a newscast at each whole hour (with RDF 10)

• announcements of PD related events:
a (registered) user can upload a specific announcement text, which will be read after the
news each hour for e.g. one week

• live streaming of events:
registered users can reserve one or two hours to stream their live shows (they get a
password+username and can stream directly from PD to our icecast server)

• PDtv - a video stream with PD related audio-visual works

4 conclusion

So if you want to listen to the stream, vote for songs or you have music related to PD and
want to share it - follow the link: http://pdradio.iem.at !

9Icecast: http://www.icecast.org and shoutcast external for PD by Olaf Matthes: http://www.

akustische-kunst.org/puredata
10RDF, Resource Description Framework: http://www.w3.org/RDF/

5

http://pdradio.iem.at
http://www.icecast.org
http://www.akustische-kunst.org/puredata
http://www.akustische-kunst.org/puredata
http://www.w3.org/RDF/

	concept
	radio stream
	interaction
	archive
	license

	technical realisation
	CMS System
	the webinterface
	XML-RPC
	the sound engine
	program logic
	radio moderator
	post processing, streaming

	future plans
	conclusion

