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ABSTRACT

This paper proposes reservoir computing as a general framework
for nonlinear audio processing. Reservoir computing is a novel
approach to recurrent neural network training with the advantage
of a very simple and linear learning algorithm. It can in theory
approximate arbitrary nonlinear dynamical systems with arbitrary
precision, has an inherent temporal processing capability and is
therefore well suited for many nonlinear audio processing prob-
lems. Always when nonlinear relationships are present in the data
and time information is crucial, reservoir computing can be ap-
plied.

Examples from three application areas are presented: nonlin-
ear system identification of a tube amplifier emulator algorithm,
nonlinear audio prediction, as necessary in a wireless transmission
of audio where dropouts may occur, and automatic melody tran-
scription out of a polyphonic audio stream, as one example from
the big field of music information retrieval. Reservoir computing
was able to outperform state-of-the-art alternative models in all
studied tasks.

1. INTRODUCTION

Most of the classical audio processing techniques, which resulted
in numerous essential applications and are indispensable to life to-
day, are founded on the assumptions of linearity, stationarity and
second-order statistics with emphasis on Gaussianity. These as-
sumptions are made for the sake of mathematical tractability [1]].
Nevertheless, most or maybe all the physical signals that one has
to deal with in real life are generated by dynamic processes, which
are simultaneously nonlinear, nonstationary and non-Gaussian. With
the introduction of digital methods in music production, many peo-
ple missed the “warmth” and “dirt” of sounds generated by analog
audio systems. Therefore it became more and more popular to
bring back some nonlinearities and noise of the old equipment into
the digital audio processing systems, because of their enjoyable
characteristic distortions.

If one wishes to simulate, predict, classify or control nonlin-
ear dynamical systems, one needs an executable system model.
Sometimes it is hard to obtain an analytical description of the sys-
tem and then one has to use black-box modeling techniques. Usu-
ally specific algorithms have been designed for specific nonlinear
problems (for instance median and bilinear filters, special Volterra
filter structures, time delay neural networks, ... see [2]) and it was
a kind of art to find a good model. In theory recurrent neural net-
works (RNNs) can approximate arbitrary nonlinear dynamical sys-

tem with arbitrary precision (universal approximation property [3])
and are also able to (re)produce temporal patterns. However, it is
very hard to train RNNs and a number of specialized learning al-
gorithms exist in literature, which are difficult to use and lead to
suboptimal solutions.

A new and surprisingly easy to use network structure for recur-
rent neural networks was discovered independently by Jiger [4],
who called these RNNs echo state networks (ESN), and by Maass
[5l], who developed a similar approach for spiking neural networks
and called the structure liquid state machine (LSM). Both and a
few other methods are subsumed under the more general term
reservoir computing [6]. The common idea is that input signals are
fed into a fixed nonlinear dynamical system, called dynamic reser-
voir or liquid, which is composed of randomly connected recurrent
neurons. Only the output connections, the readout, are trained by
simple linear regression. Figure [I]shows a schematic overview of
the reservoir computing concept. The function of the reservoir can
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Figure 1: Schematic overview of the reservoir computing approach
with two inputs, two outputs and feedback from the outputs back to
the reservoir. Solid black arrows indicate fixed, random connec-
tions and dotted arrows are trainable readout connections.

be compared to that of the kernel in support vector machines [7]],
with the crucial difference that reservoirs are inherently temporal
and therefore well suited for audio signals: inputs drive the non-
linear reservoir and produce a high-dimensional dynamical “echo
response”, which is used as a non-orthogonal basis to reconstruct
the desired output signals by a linear combination. This strategy
has the advantage that the recurrent network is fixed and simple
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offline or online algorithms for linear regression can compute the
output weights, therefore training cannot get stuck in a local min-
ima. It has been demonstrated on a number of benchmark tasks,
that reservoir computing methods are often able to vastly outper-
form other state-of-the-art algorithms for nonlinear dynamical sys-
tem modeling (see for example [8]]).

In this paper, reservoir computing is introduced as an addi-
tional, powerful tool for nonlinear audio processing and Section 2]
briefly presents the basic network equations and an overview over
different architectures. Always when nonlinear effects are per-
ceivable or important, linear modeling is insufficient and nonlin-
ear techniques have to be applied. Reservoir computing could ex-
tend and generalize currently used linear methods in nonlinear do-
main, resulting in a tool which is not designed for only one spe-
cific application but can be trained and adapted to many practical
problems. To show the possibilities of reservoir computing, exam-
ples from three different application areas are implemented in Sec-
tion[3] The first example is a nonlinear system identification task
of a tube amplifier emulator algorithm, the second an audio pre-
diction task, where the reservoir computing network tries to fore-
cast future samples out of a given history horizon. Afterwards a
classification-based system for automatic melody transcription out
of a polyphonic audio stream is presented, as one example of possi-
ble applications in music information retrieval. In all simulations,
reservoir computing was able to outperform current state-of-the-
art alternative models. Finally Section [] gives a short conclusion
and lists advantages and disadvantages of the proposed framework.

2. RESERVOIR COMPUTING

Reservoir computing is a term for a recently emerged supervised
learning technique for recurrent neural networks. Its main repre-
sentatives are echo state networks [4]], liquid state machines [3]]
and a few other models like backpropagation decorrelation [9] and
Evolino-based LSTM networks [[10]. Most implementations of the
liquid state machine use a spiking neuron model called leaky inte-
grate and fire (LIF) neuron [[11]], whereas echo state networks are
composed out of analog neurons, for instance linear, sigmoid or
leaky integrator units. The common idea is to use a fixed reservoir
with sparsely and randomly connected neurons, and only the out-
put weights are adapted during training. Finding the right output
weights is a linear regression task and if a mean squared error is
used, the algorithm will find a global minimum of this error func-
tion. The output signals can also be fed back as additional inputs,
which makes it possible to train these RNNs as oscillators or other
generators. A schematic overview of the reservoir computing con-
cept with output feedback is presented in Figure[I]

On a first view it might look, that random reservoirs must not
work satisfactorily. However, [12] showed that also in traditional
training methods for RNNs, where all weights are adapted, the
dominant changes are only in the output weights. Furthermore
classical RNN learning algorithms adapt the connections by some
sort of gradient descent, which renders them slow and convergence
cannot be guaranteed. Reservoir computing belongs to the family
of computational methods with a clear biological footing and a re-
lated mechanism has been investigated in cognitive neuroscience
[[13] in the context of modeling sequence processing in mammalian
brains, especially speech recognition in humans. Moreover it was
proven in [5] and [14], that reservoir computing techniques have
a universal computation and approximation property and can re-
alize every nonlinear filter with bounded memory arbitrarily well.

Altogether they offer an attractive method for solving complicated
engineering and especially nonlinear signal processing tasks.

The next two subsections will introduce the basic network
equations and an overview over different architectures. However,
note that it is not possible in the scope of this paper to present a
detailed and theoretical background, the interested reader should
follow the references where necessary.

2.1. Notation and Training

Here the mathematical discussion is restricted to reservoir comput-
ing with basic analog neurons, such structures are also referred to
as echo state networks (ESNs). An analog neuron receives inputs
and computes a weighted sum of them to produce an output. After-
wards the output is passed through a so called activation function,
which is usually a non-linear function with a sigmoid shape. In the
examples of this paper, hyperbolic tangent (tanh) and linear activa-
tion functions, as commonly seen in multilayer perceptrons [15],
are used.

Consider an echo state network with L inputs, M outputs and
a reservoir with NV neurons. At time n = 1,2, ..., Nmaqz the input
vector is u(n) and the output y(n). The activations (current out-
puts) of all neurons in the reservoir are collected each timestep in a
N-dimensional vector x(n) = (z1(n), ...,xn(n))T. Internal con-
nection weights of the reservoir are stored in a N X N matrix W,
weights of input-to-reservoir connections in a L x N matrix W™
and possible output-to-reservoir (feedback) weights in a M x N
matrix W/?. The only trainable weights are output weights, which
include connections from the reservoir neurons and inputs to the
outputs and are collected in a (N + L) x M matrix W,
The activations of neurons in the reservoir are updated according
to

x(n+1) = f(pWx(n)+ W u(n+1)+W'y(n)+v(n+1)) (1)

where v(n + 1) is a small possible noise term and f is the non-
linear activation function of the reservoir neurons, for example
tanh, a sigmoid or step function. If the largest absolute eigenvalue
| A lmaz (W) = 1 and the spectral radius p is 0 < p < 1, the
network states x(n) become asymptotically independent of initial
conditions and depend only on a input history, which is called the
“echo state property” [4].
After calculating the internal states, the outputs can be computed
with

¥(n+1) = g(W x(n + 1) u(n + 1)]) @

where g is again a linear or non-linear activation function and
[x(n 4 1);u(n 4 1)] denotes a serial concatenation of the inter-
nal state and input vector.

A training algorithm modifies only output weights W°“*, so
that an optimal mapping from the internal states x(n) to a desired
teacher signal is achieved. Finding the right mapping is a linear
regression problem and if a mean squared error is used, the al-
gorithm will find a global minimum of this error function. Com-
monly known online (e.g. LMS or RLS) and offline (e.g. pseudo-
inverse, ridge regression) linear regression algorithms can be ap-
plied to this task.

In an offline training algorithm, based on the pseudo-inverse, the
following steps calculate optimal output weights W°“*:

1. Randomly initialize the reservoir with a sparse connection
matrix W, so that its largest absolute eigenvalue | A |max
(W) = 1 and set the spectral radius p between 0 < p < 1.
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The network will be stable and has the “echo state prop-
erty”

2. Run the reservoir with a teaching input signal Wtcacn (1)
to produce reservoir activations x(n) for each timestep ac-
cording to Equation[T]

3. Dismiss data from an initial washout period 7y, Where
n < Nmin, to get rid of initial transients. Collect the
remaining network and input states (x(n), Uteacn(n)) for
each timestep row-wise into a (Nmaz — Mmin) X (N + L)
matrix S, where N4 is the number of training examples.

4. Invert output activation function g and collect target signals
€7 (¥,00en, (1)) for each output neuron and timestep n >
Nmin INtO & (Mmaz — Nmin) X M matrix T.

5. Compute pseudo-inverse ST and put
weut = (stT)T 3)

where (.)" denotes the pseudo-inverse and (.)T the transpo-
sition of a matrix.

6. The network is now trained and Equations [T] and ] can be
used to calculate new outputs.

For more details on how to train echo state networks and the selec-
tion of model parameters (e.g. network size /N and spectral radius
p) the reader is referred to the ESN tutorial by Jager [16].

2.2. Different Reservoir Computing Architectures

Reservoir computing can be seen more as a framework rather than
one specific algorithm. Various models exist in literature, which
are adapted to specific requirements. The primarily emerged two
main flavors are echo state networks [4], composed of analog neu-
rons as described in Section [2.1] and liquid state machines [3],
which are made of biologically more plausible spiking neurons and
have been developed in a computational neuroscience perspective.

From an engineering point of view, analog neurons are pre-
ferred most of the time, although liquid state machines were suc-
cessfully applied to speech recognition problems [6]. Additional
analog neuron types are for instance leaky integrator units [17],
which also incorporate information from previous time steps, filter
neurons [18]], where regions tuned to different frequency bands can
emerge in the reservoir, or long short-term memory (LSTM) neu-
rons [10], which are one way to model long-term dependencies.

Furthermore there are many possibilities how to train the read-
out. These algorithms can be divided into online and offline meth-
ods. Offline algorithms are for instance the Wiener-Hopf solu-
tion 18], which is basically equivalent but faster than the pseudo-
inverse based approach from Section ridge regression [17],
which incorporates an additional regularization factor, the delay
& sum readout [18]], which adds trainable delays to the readout
connections and therefore vastly improves the memory capacity,
or also linear support vector machines [[10], which try to maximize
the margin instead of a mean squared error and are often useful
in classification tasks. Online learning rules are for instance the
backpropagation-decorrelation (BPDC) algorithm for O(N) train-
ing [9]] or the recursive least square (RLS) algorithm [8].

An other direction of research is reservoir adaptation, where
one tries to pre-adapt the random reservoir to a specific task [19].
However, reservoir adaptation techniques were not used in the ex-
amples of this paper.

!Note that the “echo state property” ensures stability only for networks
without output feedback. For a more detailed stability analysis see [4].

3. SIMULATIONS

The following subsections present examples from three main ap-
plication areas of reservoir computing networks: audio system
identification, audio prediction and music information retrieval or
audio classification. All results are compared to alternative mod-
els. Network setups for all tasks are presented in Table[I} Other
parameters, if necessary, will be described before presenting the
simulation results. For a practical tutorial on how to set the indi-
vidual parameters for a task and which neuron types to choose, one
should consider the ESN tutorial by Jager [16] and Section 7.1 of
[18].

To be able to compare the results of different algorithms, the
normalized root mean square error (N RM SFE), a common error
measure in machine learning, will be used in the first two exper-
iments. The NRM SE between a target signal ytarge:(n) and a

generated signal y(n) forn = 0,..., N — 1 is calculated with
1 N-1
NRMSE = \| =——— > (Yrarget(n) —y(n))®. 4
O.target n=0

Here the squared difference of target and generated signal is nor-
malized with the variance of the target signal Ufamet, which is
advantageous when using signals with different amplitudes. How-
ever, note the the N RM S E might not be the best choice for com-
paring the perception of different sounds. Audio signals that are
very close in terms of temporal waveforms may be very different
from a perceptual point of view, therefore subjective listening tests
should be used for evaluation in a more comprehensive study.

All simulation were implemented in Pytho and a C++ library
for reservoir computing networks, called aureservoif’| was devel-
oped. The audio examples of the current section are downloadable
at http://grh.mur.at/publications/reservoir-computing-for-audiol

3.1. System Identification of a Tube Amplifier Plugin

Nonlinear system identification tasks are necessary in many ap-
plications in audio signal processing. Always when distortions or
saturations are perceivable, linear modeling is not sufficient and
nonlinear methods have to be applied. Often Volterra systems
[21] were used for applications like black-box modeling audio ef-
fects with nonlinear distortions [22], nonlinear echo cancellation
[23], loudspeaker linearization using pre-distortion [24]], nonlin-
ear beamforming [25] or restoration of nonlinearly distorted au-
dio [26]. In general also reservoir computing techniques could be
applied to all those tasks, with the advantage that they are quite
easy to use and have a much lower computational complexity than
Volterra series with a large number of kernel terms. Furthermore
it was theoretically proven in [27], that neural networks with time
delays are able to approximate all filters that can be characterized
by Volterra series.

This example presents a black-box nonlinear system identi-
fication of a tube amplifier emulator algorith Volterra series
were applied in literature for black-box modeling of tubes on digi-
tal computers [28]], but usually only second or third order systems

2NumPy and Scipy (http://www.scipy.org) are packages for numerical
and scientific computations under Python (http://www.python.org).

3aureservoir: |http://aureservoir.sourceforge.net, efficient C++ library
for analog reservoir computing neural networks with Python bindings

4The equipment and time for the identification of a real tube amplifier
was unfortunately not available.
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Table 1: Network setups for the simulations of Section[3]

Parameters Nonlinear System Identification =~ Audio Prediction Melody Extraction
Reservoir neurons N 100 100 1000

Reservoir connectivity 0.2 0.2 0.1

Spectral radius p 0.85 0.8 0.3

Reservoir neuron type standard analog neurons (Eq. filter neurons [18] leaky-integrator neurons [17]]
Input weights W' between [—4,4] no inputs [—0.3,0.3]

Feedback weights W/® between  no feedback [—0.5,0.5] no feedback

Readout type delay&sum readout [[18]

delay&sum readout [18]  linear SVM readout [20]

with special structures for complexity reduction performed accept-
able. Two different tubes, both implemented as open source digital
audio plugins (LADSPAEI), are identified with reservoir comput-
ing networks and compared to an identification with third order
Volterra systems.

A challenging task was to choose the right training signals
for the identification process, so that trained reservoir and Volterra
systems performed well on arbitrary audio inputs. In linear signal
processing impulses, swept sines, noise or maximum length se-
quences (see [29] for an overview) are used, because they include
all frequencies of interest. However, in a nonlinear system identifi-
cation all frequencies in all possible amplitudes should be present
in the training signal. After some experiments it turned out, that
the by far best generalization error could be achieved with linear
amplitude sweeps of Gaussian white noise, shaped with an addi-
tional low-pass ﬁltelﬂ A more detailed discussion of these training
signals is given in [18]], see also [30], [31] and [32] for nonlinear
system identification examples.

In the first identification example a solo flute was used as test
signal, discretized at a sampling rate of 44100 Hz. It was upsam-
pled by a factor L = 5 to avoid aliasing, then processed by the
“Valve Saturation” LADSPA plugin [33] and finally downsampled
again by the same factor. The plugin had two adjustable parame-
ters, which were set to Distortion level = 0.8 and Distortion char-
acter = 0.5. After analyzing the implementation, the system can
be divided into a static nonlinearity and a simple first order recur-
sive linear filter. First the nonlinearity is applied to the input signal

__z(n)—gq q
2n) = T Siem o T 1C ot

;o x(n)#0, q#0 (5)
where d and g can be calculated from the plugin parameters and
were set to ¢ = —0.198 and d = 20.1. Afterwards z(n) is pro-
cessed by a simple recursive filter, producing the output y(n)

y(n) =0.99y(n — 1) + z(n) — z(n — 1). 6)

The second tube example was simulated with a more com-
plex test signal, including many instruments and a singer. This
signal was processed with an oversampling factor L = 10 by the

SLADSPA: Linux Audio Developer’s Simple Plugin API, a cross-
platform standard that allows software audio processors and effects to be
plugged into a wide range of audio synthesis and recording packages, see
http://www.ladspa.org/,

®These signals worked much better than swept sines, for the reservoir
and the Volterra system. It was also important to use Gaussian noise, uni-
formly distributed noise performed much worse.

“TAP TubeWarmth” LADSPA plugin [34], which also had two ad-
justable parameters and they were set to Drive = 8 and Tape—Tube
Blend = 8.

In the plugin the input signal x(n) is again first passed through a
static nonlinearity

z(n) =a (\/| b1 +z(n)(bi,2 —z(n)) |+ b1,3) )
for z(n) >0
2(n) = —a (VIb21 = 2(n)(ba + 2(m) [+ bas) |

for z(n) <0

@)

with the parameters a = 0.5305, b1,1 = 0.1896, b1 2 = 2.8708,
b1z = —0.4354, ba1 = 16.9468, bao = 27.1424, by 3 =
—4.1166. Afterwards a linear recursive filter is applied to get the
output y(n)

y(n) = -1

= W(y(n—l)—&-z(n)—z(n—l)) (8

where f, is the sampling rate of the audio signal.

For both experiments a reservoir computing network as pre-
sented in Table [T was used. It was first driven by 3000 samples
of the training signal to washout initial transients and afterwards
output weights were calculated from the next 5000 samples. Input,
output target and the network output signal for the first identifica-
tion example are shown in Figure[2]

Input signal Target output

Network output
1.0 1.0 1.0

0.5 0.5 0.5

0.0 0.0 0.0

—-0.5 —0.5] —0.5]

—L0—¢ ok 25k sk 0 ek Tok 25k 35k 0Bk 15k 23k 35k

Figure 2: Extract from the input, output target and network output
signal of the first audio system identification example (flute signal).

As a comparison, the same two examples were also identi-
fied using a third-order discrete time Volterra system [21]. The
lowest generalization error was achieved with Volterra kernels h1,
ha, hs of memory depth Ny = 100, No = 40, N3 = 5 and
the system was trained using a least squares approach [21] with
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10000 samples of the training signal. The performance of both
systems was measured with the normalized root mean square er-
ror as introduced in Equationd] Table 2] shows the NRM SE¢cq
for both algorithms and identification examples, calculated from
100000 time steps of the test signals. One can see that especially
in the second identification example, reservoir computing was able
to outperform the Volterra system, while at the same time need-
ing less computational power. However, it is also important to
note that in both examples the nonlinear processing, a memoryless
nonlinearity followed by a first-order filter, was quite simple. It
was shown e.g. in [35] that reservoir computing techniques have
advantages especially with higher-order nonlinear dynamical sys-
tems. Furthermore Volterra series are not preferred when strongly
saturating nonlinearities are to be simulated due to the large num-
ber of required kernel terms.

Table 2: Test error N RM S Ecst of the reservoir computing and
Volterra system for both nonlinear audio system identification ex-
amples.

| Identification Example | Reservoir Comp. [ Volterra |

Valve Saturation (1) 0.0997 0.1277
TAP TubeWarmth (2) 0.1372 0.2353

The generalization performance of the reservoir approach was
very constant, also when changing the system parameters from Ta-
ble[T} In general it did not matter at all which exact values were
chosen and it was easy to get good results. However, a delay&sum
readout [18] was able to boost the performance, although there are
no obvious long-term dependencies in the system.

3.2. Nonlinear Audio Prediction

The second example presents an audio prediction application with
reservoir computing and compares the performance to commonly
used alternative models. In audio prediction one tries to forecast
future samples out of a given history horizon. Such methods are
necessary for instance in audio restoration, whenever a sequence of
consecutive samples is missing, or when impulsive noise appears.
The scenario of this task [36] is a wireless signal transmission,
where short dropouts with a length between 2 and 6 milliseconds
can occur due to transmission problems. After each dropout, the
signal is predicted for further 200 samples and crossfaded with the
original one to avoid discontinuities at the transition points (see
Figure ). Two different audio examples were taken from [36]],
both with a duration of five seconds and a sampling rate of 44100
Hz. The first one is a short recording of a Jazz quartet and the
second an orchestra composition by Beethoven. 27 dropout were
generated at random locations within each audiofile, resulting in
two percent of corrupted audio. A short extract with dropouts from
the first audio example is shown in Figure[3]

The prediction performance of reservoir computing for both
examples is compared to two commonly used alternative models:
a pattern matching algorithm (PatMat) and a linear autoregressive
(AR) model.

Pattern matching algorithms [37]][38] use a signal template, usu-
ally just before the dropout, which is compared to areas in the past
of the audio signal (the search window). Then the area within this
search window with the highest similarity to the audio template is
selected and copied into the dropout region. Many different ver-

Jazz Example

0.3

0 2000 4000 6000 8000 10000

Figure 3: Extract from the Jazz audio example of the nonlinear
audio prediction task. Dropouts are marked with dotted lines.

sions of pattern matching algorithms exist and were evaluated in
[36]. Here only the one with the best prediction result, which is
based on waveform differences and defined in Equation 6 of [37],
was considered.

Additionally a linear autoregressive model [26], which is widely
used for signal modeling, was implemented. The order of this lin-
ear predictor was set to 300, so that complex signals can be repre-
sented. Because no audio signal is truly stationary, it was neces-
sary to train the model from a relatively short block of samples and
a block length of 3000 was found to be optimal. Finally the coef-
ficients of the AR model were estimated with a least squares ap-
proach based on those 3000 samples as described in Section 3.3.1
of [26].

The parameters of the reservoir computing network are given
in Table[Il Here the reservoir neurons had additional built-in fil-
ters, to produce subregions in the network, which are specialized
to process different frequency bands [18]]. These band-pass filters
were fixed when constructing the reservoir and spaced logarith-
mically between 60 Hz and 11000 Hz, to contain all frequencies
important for the task.

In audio prediction the network is trained to be a generator of the
audio signal, therefore the system needs output-feedback connec-
tions, indicated as W7? in Equation The network was first driven
by 3000 samples to washout initial transients and afterwards out-
put weights were calculated from 3000 time steps directly before
the dropout.

Adding a small noise term v(n) in the state update equation as
regularization is often necessary for stability when networks are
trained with output feedback. The amount of noise was chosen so
that no more unstable simulations were produced and a uniform
noise term v(n) between [—0.0002, 0.0002] was found to be opti-
mal.

The performance of all algorithms was benchmarked by calcu-
lating the normalized root mean square error between model out-
put and original signals, only from data in the dropout regions. Re-
sults for both audio examples are presented in Table 3] Reservoir
computing networks with filter neurons and a delay&sum read-
out showed in general a slightly better performance than all other
methods, especially in the second audio example. Prediction ex-
amples of all models are shown in Figure[d]

In audio prediction it was very important to use filter neurons
[[18] in the reservoir. With standard neurons, as defined in Equa-
tion[T] the network was not able to produce that good results. The
parameters of filter neurons were set to contain all necessary fre-
quencies important for the task and logarithmically spaced band-
pass filters from 60 Hz to 11000 Hz, with a bandwidth of 2 octaves,
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Table 3: Test error N RM S Etest calculated from the dropout re-
gions of both audio examples of the nonlinear audio prediction
task.

| Example [ Reservoir Comp. [ AR Model [ PatMat ‘
Jazz (1) 0.601 0.671 0.734
Beethoven (2) 0.536 0.849 0.873

Reservoir Computing

0 50 100 150 200 250 300 350 400
AR Model

0 50 100 150 200 250 300 350 400
PatMat

0 50 160 150 200 250 300 350 400

Figure 4: Example dropout of the audio prediction task. The origi-
nal signal is plotted in light gray, the predicted signal in dark gray.
Beginning and ending of the dropout is marked with dotted lines.

were found to be optimal.

With an additional delay&sum readout [18], it was possible to
achieve a further performance boost. The exact values of all other
parameters (spectral radius, feedback weights, connectivity) did
not matter and it was easy to get good results.

3.3. Music Information Retrieval: Melody Extraction

Music information retrieval (MIR) is an emerging research field
and many MIR applications use classifiers, like support vector ma-
chines (SVM) or hidden Markov models, to learn from existing
music databases. Reservoir computing techniques are in princi-
ple similar to SVM classifiers [7], with the crucial difference that
they also incorporate the temporal development of input signals.
Therefore in tasks, where also time information is very important,
reservoir computing should be able to boost the classification per-
formance.

As one example from the pool of possible applications, a reser-
voir computing network was trained to extract the predominant
melody (lead voice) of a polyphonic piece of music. Melody pro-
vides a very convenient and memorable description of popular mu-
sic and is used as the basis for instance in query-by-humming sys-
tems. Two main techniques exist in predominant melody detec-
tion: a rule-based approach, where one assumes that individual
notes are build of a set of harmonics of a particular fundamental,
and a classification based approach [39]], where the correct melody

is estimated based on a training set with labeled examples. For a
detailed comparison of different techniques see [40].

The setup of this task is similar as in [41]. Mono audio signals
were first downsampled to 8kHz and then converted to frequency
domain using a short-time Fourier transform (STFT) with a win-
dow length of 1024 (128ms) and an overlap of 944 samples (10ms
grid). Only the first 256 bins, which correspond to frequencies be-
low 2kHz, were considered. To remove some of the influence due
to different instrument timbres, the magnitude of the STFT was
normalized within each time frame to achieve zero mean and unit
variance over a 51-frame local frequency window [41].

A supervised classifier can now use these 256 STFT features
as input and calculates one output for each possible pitch class,
quantized in semitones. In training the target output is set to 1 and
all others to -1, and in testing the output with the highest value
is considered as the pitch of the current frame. The biggest prob-
lem in a classification-based approach is to collect a suitable set
of training data. Here a subset of the dataset from [41] was used
and manually divided into a train and test set, so that every possi-
ble pitch class was included at least once in the training data. In
especially, only the synthesized MIDI files, where the lead voice
is a monophonic track and can be extracted easily, were utilized in
this experimen

First a SVM with a radial basis function kernel was imple-
mented, using the popular LIBSVM libraryﬂ to get a baseline. In
order to classify the dominant melodic note with SVMs, it is as-
sumed that each frame is independent of all others, because this
classifier has no built-in memory and can only see the STFT data of
the current frame. One SVM for each of the 19 target pitch classes
and one additional SVM, which should indicate when background
is detected and no melody note is present, were trained on the
dataset. SVM parameters v and C' were varied in a grid search
[20] within C = 275,273, ... 2% and y = 2715 2713 23
and the optimal values were found to be C' = 0.5 and v = 0.125.

The reservoir computing network had leaky-integrator neu-

rons [17] in the reservoir and the detailed setup is shown in Ta-
ble[I] As input, the 256 STFT features were used and again one
output for each possible pitch class was trained.
The reservoir computing framework does not prescribe a particular
optimality criterion for calculating the output weights. If instead
of the mean squared error criterion from Equation [3| a maximum
margin criterion is considered, using for instance a linear SVM, the
classification performance can be improved significantly. There-
fore each output neuron was implemented as a linear SVM [20)].

To compare the performance of both algorithms, an error is

counted for each frame where a classifier predicts a wrong note.
The absolute number of frame errors and the percent error rate is
presented in Table[d] furthermore an example classification output
is shown in Figure [5§] However, note that no additional features
and post processing techniques [40] were applied and these values
are the raw classification results.
Reservoir computing achieved a performance boost of about 36%
compared to the SVM approach, therefore one can assume that
time information between frames and memory is also important in
this task. The assumption from [41]], that each frame is indepen-
dent of all other frames, is obviously a rough simplification.

TThe multitrack audio recordings from [41] were removed from the
dataset, because they were not hand-labeled and contained errors in the
target data.

SLIBSVM: http://www.csie.ntu.edu.tw/ cjlin/libsvm/, an open-source
library for support vector machines.

DAFX-6


http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Proc. of the 12™ Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

Table 4: Frame error rate of the melody extraction example, in
absolute values and percentage.
| Misclassifications | Reservoir Comp. [ SVMs |

absolute errors 571 892

percent error rate 14.75% 23.05%
o8 Reservoir Computing
66 R e - : _— 1
64t — —_—— —_— — 1
62 - o — e 1
60 - i : . 1
58 e ; : - 1
56 100 200 300 400 500

SVMs

68
66 R e - : _— 1
6al N . - — - —_ — |
62| - - - |
60 - i : . 1
58 1
56 100 200 300 400 500

Figure 5: Example classification results from both melody extrac-
tion algorithms. Target values are plotted in light gray boxes,
model outputs in black dots.

Leaky integrator neurons and linear SVM readouts were able
to significantly improve the performance in this task.
In many classification applications, the maximum margin criterion
of SVMs has advantages compared to the mean squared error cri-
terion. The additional parameter C of a linear SVM was easily
discovered by a line search and a value of C' = 0.001 was found
to be optimal [20].
Leaky integrator units [17] incorporate also information of the net-
work states from previous time steps when calculating the current
state. Such neuron types were useful in many classification tasks,
because the dynamics in the reservoir are slowed down and the
memory capacity is enhanced. The additional parameter leaking
rate was set to 0.3 (same value as the spectral radius p), resulting
in an effective spectral radius of 1 [[17].
A further important parameter was the network size IV of the reser-
voir. The bigger the network, the better was the classification
performance. However, the size was finally fixed at a value of
N = 1000, although it was possible to get better results when
using even bigger networks.

4. CONCLUSIONS

This paper proposed reservoir computing as a general black-box
framework for nonlinear audio processing. The presented sim-
ulations included three main application areas (nonlinear system
identification, nonlinear time series prediction and classification)
and it was demonstrated, that reservoir computing was able to out-
perform state-of-the-art alternative models in all studied tasks. Al-
ways when nonlinear relationships are present in the data and time
information is crucial, these techniques can be applied. Therefore
reservoir computing can be seen as a generalization of currently
used linear methods in nonlinear domain, resulting in a tool which

can be trained and adapted to many practical problems.
A number of pleasant properties of the model exist [42]:

Inherently temporal: The network itself is inherently tempo-
ral and therefore especially useful for audio processing. Because
of recurrent reservoir connections, the influence of an input re-
mains detectable in the reservoir and there is no need to manually
encode time information in space (like for instance with tapped de-
lay lines). The current reservoir state is a snapshot of the temporal
development of inputs, therefore a readout function can instantly
see the temporal information contained in all input signals.

Multiple readouts: If there is no feedback from outputs, it is
possible to use multiple readouts on the same reservoir, as demon-
strated in the melody extraction example from Section [3.3] This
means that multiple tasks can be trained simultaneously on the
same input signals, with the advantage that the costly nonlinear
transformations only have to be calculated once. For instance, ad-
ditional readouts for drum or baseline extraction could be easily
added to the melody extraction example using the same reservoir.

Simple Training: There is no need to train the reservoir. Once
it is constructed, it won’t be modified by a learning algorithm.
Only the readout functions need to be trained by simple and lin-
ear methods, which is usually much easier, more accurate and less
costly than training a complete recurrent neural network or other
nonlinear models.

A disadvantage of the proposed framework is, that it contains
many extensions and different neuron types, which might be con-
fusing for beginners. However, once one is familiar with the basic
reservoir computing ideas, the parameter settings and neuron types
are quite intuitive and even beginners will soon get good results.

Further possible audio applications of reservoir computing are:

e Long-term audio prediction tasks, as necessary in audio
restoration.

o The delay&sum readout [[18] should be well suited for non-
linear echo cancellation or beamforming applications, where
a sparse system representation is necessary.

e Many classification tasks in music information retrieval could
benefit from reservoir computing techniques.

e Reservoir computing networks can be used as audio synthe-
sizers, when training specific control input signals to target
audio samples.

Altogether reservoir computing offers an attractive framework
for solving complicated nonlinear audio processing tasks and could
be considered as an additional tool in many signal processing and
classification applications. They are quite easy to use, robust against
parameter changes and often have a much lower computational
complexity compared to other nonlinear models.
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