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Echo State Networks with Filter Neurons
and a Delay&Sum Readout

Abstract

Echo state networks (ESNs) are a novel approach to recurrent neural net-
work training with the advantage of a very simple and linear learning algo-
rithm. It has been demonstrated that ESNs outperform other methods on a
number of benchmark tasks. Although the approach is appealing, there are
still some inherent limitations in the original formulation.

Here we suggest two enhancements of this network model. First, the pre-
viously proposed idea of filters in neurons is extended to arbitrary infinite
impulse response (IIR) filter neurons. This enables such networks to learn
multiple attractors and signals at different timescales, which is especially
important for modeling real-world time series. Second, a delay&sum read-
out is introduced, which adds trainable delays in the synaptic connections of
output neurons and therefore vastly improves the memory capacity of echo
state networks.

It is shown in commonly used benchmark tasks and real-world examples,
that this new structure is able to significantly outperform standard ESNs
and other state-of-the-art models for nonlinear dynamical system modeling.

Keywords: Echo state networks; Reservoir computing; Nonlinear dynamical system
modeling; Delay learning; Time series prediction;
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1 Introduction

In theory recurrent neural networks (RNNs) can approximate arbitrary nonlinear dy-
namical system with arbitrary precision (universal approximation property [24]) and are
also able to (re)produce temporal patterns. However, learning the weights in RNNs is
tedious. A number of specialized learning algorithms exist in literature [13], which are
usually converging slowly and often lead to suboptimal solutions.

A new and surprisingly easy to use network structure for RNNs was invented inde-
pendently by Jäger [11], who called these RNNs echo state networks (ESN), and by
Maass et al. [19], who developed a similar approach for spiking neural networks and
called this structure liquid state machine (LSM). Both methods are usually subsummed
in literature under the more general term reservoir computing [28]. The common idea
is that input signals are fed into a fixed nonlinear dynamical system, called dynamic
reservoir or liquid, which is composed of randomly connected neurons. Only the output
connections, the readout, are then trained by simple linear regression. Figure 1 shows a
schematic overview of the reservoir computing concept.

Figure 1: Schematic overview of the reservoir computing approach with two inputs, two
outputs and feedback from the outputs back to the reservoir. Solid black
arrows indicate fixed, random connections and dotted arrows are trainable
readout connections.

Most implementations of the liquid state machine use a spiking neuron model called
leaky integrate and fire (LIF) neuron [18], whereas echo state networks are composed out
of analog neurons, for instance linear, sigmoid or leaky integrator units. The function of
the reservoir can be compared to that of the kernel in support vector machines [6]: input
signals drive the nonlinear reservoir and produce a high-dimensional dynamical ”echo
response”, which is used as a non-orthogonal basis to reconstruct the desired outputs
by a linear combination. This strategy has the advantage that the recurrent network is
fixed and simple offline or online algorithms for linear regression can compute the output
weights. Therefore training is simple, fast and cannot get stuck in a local minima.
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Although the reservoir computing approach is very appealing, there are still some in-
herent limitations in the original formulation and solutions for two main problems is the
contribution of this work. First, the problem of learning multiple attractors or signals
with different timescales is addressed. Since reservoir neurons are connected to each
other, their states are coupled and it is for instance not possible to train one ESN to
be a generator for a sum of multiple sines at different frequencies. While an additive
superposition of sines is easy to handle for linear systems, nonlinear systems in general
do not generate noninterfering additive couplings and a number of unwanted dynamic
side effects can happen [16]. However, real-world time series are often composed out of a
superposition of multiple attractors, like for instance audio signals, where many sources
are mixed together. One solution was proposed by Wustlich and Siewert [29]. They
introduced filter neurons as an extension of ESNs with leaky-integrator units [16]. If
reservoir neurons have additional built-in filters, “specialized” neurons tuned to different
frequency bands can emerge and more diverse echoes, which are able to model multiple
attractors, will evolve. We build on this idea and propose an arbitrary order infinite im-
pulse response (IIR) filter neuron, which allows to reuse well established structures from
digital filter theory. The parameters of our suggested filters are different for each neuron
and are fixed in advance, like the weights of connections in the reservoir. Therefore no
additional training is necessary and a simple linear readout, like e.g. in the standard
ESN formulations, can be used.
A similar approach was developed in parallel in [30]. Compared to our networks, they
used bigger reservoirs with pools of neurons with different filters, which were also tuned
to the frequency spectrum of the desired response signal.

The second problem we address is the limited memory capacity of ESNs. The short
term memory, how many data points from the past are actually relevant for the compu-
tation of the current outputs, was analyzed in [12], where it was shown that the memory
capacity is restricted by the reservoir size. Especially in signal processing applications,
which often use very high sampling rates, this would imply that one has to deal with very
big reservoirs, which is not trivial to implement even on current computers. We introduce
an alternative approach to handle long-term dependencies by adding trainable delays to
the synaptic connections of readout neurons. This structure will be called delay&sum
readout and was inspired by the delay&sum beamformer as used in signal processing
with antenna or microphone array systems (see for instance [32]). Compared to standard
echo state networks, where only weights of the readout are adjusted in training, a learn-
ing algorithm is introduced which modifies delays and weights of the delay&sum readout.
The introduction of delays makes it possible to shift reservoir signals in time and is a
computationally cheap method to vastly improve the memory capacity. Simulations in
Section 4 show that also in chaotic time series prediction (Mackey-Glass System), where
ESNs vastly outperformed all other techniques for nonlinear system modeling [15], a
delay&sum readout is still able to improve the results. To the knowledge of the authors
there exists no other generic method with comparable performance for sparse nonlinear
system identification of higher order systems.

Viewed from a biological perspective, also axons insert delays in connections between
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neurons. Although axonal transmission delays do not vary continually in the brain, a
wide range of delay values have been observed [21]. Neuroscience experiments in [27]
give also evidence to the variability of transmission delay values from 0.1 to 44 ms, see
also [4] for a more recent investigation.

The contents of this paper is organized in five sections. Section 2 will extend the sim-
ple echo state network to ESNs with general IIR filter neurons in the reservoir. Next the
delay&sum readout is introduced in Section 3 and two possible delay learning algorithms
are presented. Four experiments, which demonstrate the usefulness of filter neurons and
a delay&sum readout, are analyzed in Section 4. The first is a multiple superimposed os-
cillations (MSO) task, where filter neurons are mandatory, the second a sparse nonlinear
system identification with long-term dependencies, where the delay&sum readout is able
to vastly improve the memory capacity of ESNs. Afterwards a common benchmark task,
the Mackey-Glass system, is discussed and then a real-world nonlinear audio prediction
example is presented, where it is shown that the proposed structure is able to outperform
state-of-the-art alternative methods. Finally Section 5 gives a short conclusion.

2 Filter Neurons

Echo state networks [11] use sparsely and randomly connected neurons (the reservoir)
and only the output layer (the readout) is adjusted during training. The output signals
can be fed back as additional inputs, which makes it possible to train ESNs as oscillators
or other generators. A schematic overview of ESNs with output feedback is presented
in Figure 1.
In this section we will briefly revise the standard formulations of ESNs, then the reservoir
will be extended with additional build-in filters. This enables ESNs to model signals at
different timescales and/or to learn multiple attractors in a single network.

2.1 From Standard Networks to Low-Pass Neurons

Consider an ESN with L inputs, M outputs and a reservoir with N internal network
units. At time n = 1, 2, ..., nmax the input vector is u(n) and the output y(n). The
activations of internal units (neurons in the reservoir) are collected in a N × 1 vector
x(n) = (x1(n), ..., xN(n))ᵀ and internal connection weights in a N×N matrix W, weights
of input connections in a L×N matrix Win, feedback weights in a M ×N matrix Wfb

and output weights in a (N + L)×M matrix Wout.
The activations of neurons in the dynamic reservoir are updated according to

x(n+ 1) = f(ρWx(n) + Winu(n+ 1) + Wfby(n) + υ(n+ 1)) (1)

where υ(n+1) is a small optional noise term and f is the nonlinear activation function of
the reservoir neurons, for example tanh, linear or a step function. If the largest absolute
eigenvalue | λ |max (W) = 1 and the spectral radius ρ is 0 ≤ ρ < 1, the network states
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x(n) become asymptotically independent of initial conditions and depend only on input
history, which is called the “echo state property” [11].

The readout neurons have connections to the reservoir units x(n) and inputs u(n),
which can be combined into a vector s(n)

s(n) = (x1(n), . . . , xN(n), u1(n), . . . , uL(n))ᵀ. (2)

Finally the new outputs y(n+ 1) can be calculated with

y(n+ 1) = g(Wouts(n+ 1)) (3)

where g is again a linear or nonlinear activation function.
A training algorithm modifies the output weights Wout, so that an optimal mapping

from the internal states and inputs s(n) to a desired output target is achieved. Finding
the right mapping is a linear regression task and if a mean squared error is used, the
algorithm will find a global minimum of this error function. For more subtleties we refer
the reader to [11] or [15].

The general idea of echo state networks can also be applied to networks with different
neuron types. For example leaky integrator units [16] incorporate information of the
network states from previous time steps when calculating the current state x(n), there-
fore the dynamics in the reservoir are slowed down. Such neurons are useful for learning
slow dynamical systems. With leaky integrator units the reservoir states are updated
according to

x(n+ 1) = (1− aγ)x(n) + γf(ρWx(n) + Winu(n+ 1) + Wfby(n) + υ(n+ 1))

where a and γ are additional leaking rate parameters. This model depends with the
factor (1− aγ) also on the previous state x(n) and has the echo state property if
| λ |max (W) = 1, a > 0, γ > 0, 0 ≤ ρ < 1 and aγ ≤ 1 [16].

It was shown in [16] that the influence of one parameter γ, a, or ρ can be distributed
over the others without a loss of essence. By setting a = 1, as done in [29], this results
in the state update equation

x(n+ 1) = (1− γ)x(n) + γf(ρWx(n) + Winu(n+ 1) + Wfby(n) + υ(n+ 1)) (4)

where the network has the echo state property if 0 ≤ ρ < 1 and 0 < γ ≤ 1. This model
corresponds to a low-pass filter on the reservoir states, where the cutoff frequency can
be determined by the parameter γ.

2.2 General IIR Filter Neurons

In [29] two of the previous presented low-pass units from Equation 4 were combined to
get a band pass neuron. Here we go one step further and propose an arbitrary order
infinite impulse response (IIR) filter neuron, thus commonly known structures from fil-
ter theory can be recycled and one acquires a more fine-grained control over the filter’s
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frequency and phase response. Figure 2 shows the proposed IIR filter neuron, where the
filter is calculated after the nonlinearity. The parameters of these filters are different for
each neuron and are fixed in advance, like the weights of connections in the reservoir.
Therefore no additional training is necessary and a simple linear readout, like e.g. in
the standard ESN formulations, can be used.
A similar approach was also developed in parallel in [30]. Compared to our networks,
they used bigger reservoirs with pools of neurons with different filters, which were also
tuned to the frequency spectrum of the desired response signal. We use a generic ap-
proach with no necessary special tuning and which results in rather small networks.

Figure 2: Structure of a general IIR filter neuron, which is composed of an analog neuron
with an additional IIR filter after the nonlinearity.

A general IIR filter [25] can be described with

a0y
∗(n) =

K∑
j=0

bjx
∗(n− j)−

K∑
j=1

ajy
∗(n− j) (5)

where vector b = (b0, b1, . . . , bK) contains weights of the feedforward path, vector a =
(a0, a1, . . . , aK) of the feedback path, K determines the order of the filter and y∗(n) and
x∗(n) are the filter output and input at time step n.
One independent IIR filter is now added to each neuron of the reservoir with size N .
First the state is updated as in Equation 1 to produce the signal x̃(n+ 1), which acts as
an input for the filter (see Figure 2), then one IIR filter with independent parameters is
added to each neuron i, with i = 1, . . . , N , to produce the new reservoir signal xi(n+ 1)

x̃(n+ 1) = f(ρWx(n) + Winu(n+ 1) + Wfby(n) + υ(n+ 1)) (6a)

xi(n+ 1) =
1

ai,0

(
K∑
j=0

bi,jx̃i(n− j)−
K∑
j=1

ai,jxi(n− j)

)
(6b)

where bi,j and ai,j are feedforward and feedback filter weights j for each reservoir neuron
i and K determines the order of the filter as in Equation 5. To be sure that the network
has the echo state property, the maximum gain of each filter should be one, the spectral
radius ρ within 0 ≤ ρ < 1 and the maximum absolute eigenvalue | λ |max (W) = 1.

Since one can use the rich set of tools from filter design, it is possible to improve the
performance for special tasks. We used second order band-pass filters (biquad filters,
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K = 2) with a variable bandwidth, so that regions in the reservoir tuned to different
frequency bands can evolve. The center frequencies are different for each neuron and
are spaced logarithmically over a frequency range of interest as illustrated in Figure 3.
Filter parameters a and b are derived from analog prototypes and have been digitized
using the bilinear transform as shown in Appendix A. However, any other band-pass
filter design with a center frequency and filter bandwidth parameter could be used.
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Figure 3: Frequency response of band-pass filters, spaced logarithmically from 170 Hz
to 19000 Hz at a sampling rate of 44100 Hz (note that the frequency axis is
also logarithmic). In this examples every 10th neuron out of a reservoir with
100 neurons is printed and each filter has a bandwidth of 2 octaves.

3 Delay&Sum Readout

In this section we address the limited memory capacity of ESNs, which is basically
restricted by the size of the reservoir [12]. When modeling systems with long-term
dependencies, one has to deal with very big networks, which is often not possible to
implement even with modern computers. We propose an alternative approach, which
adds trainable delays in the synaptic connections of output neurons, called delay&sum
(D&S) readout.
The delay&sum readout has to learn in addition to a weight also a delay from each
neuron signal of the reservoir to each output signal. Two possible learning algorithms
are presented. An overview of the readout is shown in Figure 4.

Consider an echo state network with a delay&sum readout, N internal units, L inputs
and M outputs, where the state update x(n + 1) is computed for standard ESNs as
in Equation 1 or for reservoirs with IIR filter neurons as in Equation 6. Reservoir and
input signals are combined into a vector s(n) as defined in Equation 2. The m-th output
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Figure 4: Illustration of the delay&sum readout for one output neuron. The delay of
a signal by D samples is denotes as z−D. Each synaptic connection from a
reservoir neuron to the output neuron consists of a trainable weight and a
trainable delay.

ym of a delay&sum readout, where m = 1, . . . ,M , can be calculated with

ym(n) = g

(
N+L∑
i=1

W out
i,msi(n−Di,m)

)
, m = 1, . . . ,M. (7)

Here D is a (N + L) ×M matrix (same size as Wout) with integer delays from each
neuron and input signal to each output and g is the activation function of the output
neuron. Note that for zero delays D = 0 this is the same as Equation 3, only written as
a sum instead of the scalar product.

A learning algorithm should find optimal values for delays D and weights Wout. In
the following subsections two possible offline solutions will be presented. First a simple
learning algorithm is developed (D&S Learning Algorithm A), which just calculates the
correlation between reservoir and target signals for delay estimation, and afterwards a
more advanced version, based on an expectation-maximization (EM) method, is intro-
duced (D&S Learning Algorithm B).

3.1 D&S Learning Algorithm A: Simple Method

The simple learning algorithm calculates a cross correlation between all reservoir/input
signals s(n) and all output signals y(n) and takes always the highest peak as the trained
delay1. Afterwards the reservoir and input signals s(n) are delayed by the estimated
values from delay matrix D and then weights Wout can be computed offline by linear

1Estimating the time delay between two signals is usually known as the time difference of arrival
(TDOA) problem [32]. There exist more advanced methods to estimate the time difference, like
the generalized cross correlation [17] [3], but in most of the simulations they did not improve the
performance of the learning algorithm.
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regression with the correctly delayed signals.

The method is summarized considering an ESN with N internal units, L inputs and M
outputs:

1. Calculate delays between all reservoir/input signals sj(n) with j = 1, . . . , N + L
and all target output signals tm(n) with m = 1, . . . ,M and collect them into a
(N + L)×M delay matrix D. For each reservoir/input to output connection:

• Estimate cross correlation rsjtm(τ) between signals [17] and invert output ac-
tivation function g of the ESN

rsjtm(τ) = E
[
sj(n)g−1(tm(n+ τ))

]
where E[.] denotes the expectation operator.
Because of the finite observation time nmax the cross correlation function
rsjtm(τ) can only be estimated2 by

r̂sjtm(τ) =
1

nmax

nmax−1∑
n=0

sj(n)g−1(tm(n+ τ)), τ = 0, 1, . . . , nmax − 1. (8)

• Take the maximum of the correlation function as an estimate of the time
delay and collect it in delay matrix D at position (j,m)

Dj,m = arg max
τ
| r̂sjtm(τ) | (9)

where | . | denotes the absolute value.

Repeat the whole procedure for each target output tm(n) where m = 1, . . . ,M .

2. Delay all reservoir and input signals according to the estimated values in delay
matrix D.

3. Dismiss data from an initial washout period nmin where n < nmin to get rid of
initial transients. Collect the remaining correctly delayed input and network states
(s1(n−D1,m), . . . , sN+L(n−DN+L,m)) for each output target signal tm(n) row-wise
into a (nmax − nmin)× (N + L) matrix Sm, where nmax is the number of training
examples, and the current target signal g−1(tm(n)) into a (nmax−nmin)×1 matrix
Tm.

4. To calculate optimal weights, for each output m compute pseudo-inverse S†m and
set

Wout
m = (S†mTm)ᵀ

where Wout
m denotes the weights from all reservoir and input signals to output

signal tm(n) (m-th column of Wout).

2Note that the cross correlation estimation should be implemented in frequency domain to save com-
putation time [26].
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3.2 D&S Learning Algorithm B: EM-based Method

The simple learning algorithm presented above has some limitations. Consider for in-
stance following linear system

y(n) = x(n) + x(n− 1) + ξ (x(n− 200) + x(n− 201)) .

If the scaling factor ξ is small, the simple method will only find correct delays for x(n)
and x(n − 1), but not for x(n − 200) and x(n − 201)3. Therefore a more advanced
version, based on an expectation-maximization (EM) method as applied in a similar
problem with antenna array systems [22], is proposed in this subsection. In contrast
to the simple learning algorithm, which computes the correlation always between one
reservoir/input signal compared to the whole output signal, this algorithm subtracts
the influence of all other reservoir/input signals and estimates the delay and weight
compared to this residuum. Thus it leads to an iterative procedure where single delays
and weights are calculated sequentially.

The algorithm starts by estimating the delay between the first reservoir signal x1(n)
and the target output κ1(n) = y(n) and then calculates the single weight of this synaptic
connection. Afterwards the delayed and weighted signal x1(n) will be subtracted from
the original output y(n) to produce the new target signal κ2(n) for the second reservoir
signal x2(n). In theory this procedure will be repeated for all reservoir and input signals
until the algorithm converges, i.e. delays and weights do not change anymore. However,
it turns out that in the case of ESNs the weights converge very slowly, while on the
other hand the delays converge fast and do not change already after a few iterations.
Therefore we proposed a combined approach in learning algorithm B. First the EM al-
gorithm is used for a few iterations to estimate delays of the readout and afterwards the
weights will be recalculated offline with the correctly delayed reservoir and input signals.

The EM-based learning algorithm is illustrated in Figure 5 and can be summarized
considering an ESN with N internal units, L inputs and M outputs:

1. The EM-algorithm estimates delays and weights between all reservoir/input signals
sj(n) with j = 1, . . . , N+L and all target output signals tm(n) with m = 1, . . . ,M
and collects them into a (N + L) ×M delay matrix D and weight matrix Wout.
One iteration for updating Dj,m and W out

j,m for one target output tm(n) reads:

• E-Step:
Subtract influence of all other reservoir and input signals4 to get residuum
κj,m(n)

κj,m(n) = g−1(tm(n))−
N+L∑
i=1

W out
i,msi(n−Di,m) +W out

j,msj(n−Dj,m) (10)

where g−1 is the inversion of the ESN output activation function.

3For example if ξ < 0.1, using an ESN with 100 neurons in the reservoir, the simple learning algorithm
would not find the delays for x(n− 200) and x(n− 201).

4Note that the E-step can be implemented recursive to save computation time.
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• M-Step:
Calculate cross correlation r̂sjκj,m

(τ) between signals sj(n) and κj,m(n) as in
Equation 8 and estimate the time delay

Dj,m = arg max
τ
| r̂sjκj,m

(τ) |, (11)

afterwards compute weight W out
j,m with correctly delayed reservoir/input signal

ŝj(n) = sj(n−Dj,m)
W out
j,m = (ŝᵀ

j ŝj)
−1ŝᵀ

jκj,m. (12)

Perform E- and M-steps for each element of s(n) to complete one iteration.

2. Iterate step 1 (EM algorithm) until the delays are converged and repeat the whole
procedure for each target output tm(n) where m = 1, . . . ,M .

3. Afterwards all delays are fixed and reservoir/input signals are delayed according
to the estimated values in delay matrix D.

4. Dismiss data from an initial washout period nmin where n < nmin to get rid of
initial transients. Collect the remaining correctly delayed input and network states
(s1(n−D1,m), . . . , sN+L(n−DN+L,m)) for each output target signal tm(n) row-wise
into a (nmax − nmin)× (N + L) matrix Sm, where nmax is the number of training
examples, and the current target signal g−1(tm(n)) into a (nmax−nmin)×1 matrix
Tm.

5. To calculate optimal weights, for each output m compute pseudo-inverse S†m and
put

Wout
m = (S†mTm)ᵀ

where Wout
m denotes the weights from all reservoir and input signals to output

signal tm(n) (m-th column of Wout).

4 Experiments

In the following section we present classical benchmark tasks and a real-world applica-
tion, which will demonstrate where and how filter neurons and a delay&sum readout
have advantages. The parameters for all four tasks are presented in Table 1. Other
parameters, if necessary, will be described before presenting the simulation results.

4.1 Multiple Superimposed Oscillations

In the multiple superimposed oscillations (MSO) task an echo state network is trained
to be a generator of a superposition of sine signals. This is an often studied task in
ESN literature [16], because standard echo state networks are unable to learn functions
composed of only two superimposed oscillators. The problem is that the dynamics of
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Figure 5: EM-based learning algorithm. First weights and delays are estimated with the
EM method, afterwards delays are fixed and weights are recalculated offline.
For a description of the individual steps see Section 3.2.

Parameters MSO System identification Mackey-Glass Audio Prediction
Reservoir neurons 100 100 400 100
Reservoir connectivity 0.2 0.05 0.1 0.2
Spectral radius 0.8 0.8 0.95 0.8
Feedback weights between [−0.1, 0.1] no [−0.56, 0.56] [−0.5, 0.5]
Input weights between no [−0.1, 0.1] [−0.14, 0.14] no
Reservoir nonlinearity tanh tanh tanh tanh
Output nonlinearity linear linear linear linear
Filter neurons yes no no yes
Filter bandwidth 0.5 octaves - - 2 octaves

Table 1: ESN setups for the tasks of Section 4.

all reservoir neurons are coupled, while this task requires that different oscillations can
be represented simultaneously by the internal state vector. It is easy for linear systems,
for instance ESNs with only linear activation functions, to generate multiple sines. The
training error will be close to machine precision as long as there are at least two reservoir
neurons for one sine component. However, in such a linear system the generated sine
components are not stably phase-coupled and therefore do not result in asymptotically
stable oscillations. In the presence of small perturbations, both the amplitude and
relative phase of the sine components will go off on a random walk [16].
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With our proposed filters in the reservoir, specialized neurons tuned to different fre-
quencies exist and hence more diverse echoes emerge, which are able to generate a
superposition of sinewaves. Other solutions for this problem were already presented for
instance by Schmidhuber et al. [23], who used an evolino-based long short term memory
(LSTM) recurrent neural network, or by Xue et al. [31], where an ESNs with multiple
decoupled reservoirs was constructed. In the following we will compare the performance
of an ESN with filter neurons and a delay&sum readout to the results of [23] and [31].

In [23] a long short term memory network is trained to learn functions composed of
two to five sines:

sin(0.2x) + sin(0.311x) + sin(0.42x) + sin(0.51x) + sin(0.74x).

All four target signals are shown in Figure 6. The LSTM as well as the ESN network
were first driven with 100 samples to washout initial transients, then network weights
were calculated from steps 101 to 400 and the testing error was evaluated in time steps
401 to 700.
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Figure 6: 500 timesteps of the target signals for the multiple superimposed oscillations
(MSO) task from [23] to learn functions composed of two to five sines.

For all simulations the same echo state network with 100 IIR filter neurons in the
reservoir was trained, a detailed setup is given in Table 1. Additionally the target
signal was linearly rescaled into a range of [−1, 1], to be able to use the same setup
for all four targets. To contain all sine frequencies necessary for the task, the center
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frequencies of neurons were logarithmically spaced between frequencies 0.19/(2π) and
0.75/(2π). Figure 7 shows the NRMSEtest

5 for ESN and LSTM networks, averaged
over 20 independent simulations with randomly created reservoirs. One can see that
standard ESNs without filters are not able to learn multiple sines. When using filter
neurons in the reservoir, the test error is much lower as with an LSTM network. A
further performance boost can be achieved with an additional delay&sum readout as
presented in Section 3. For instance with two sines, the delay&sum ESN is able to
outperform the NRMSE of the LSTM network by a factor of 106.

2 sines 3 sines 4 sines 5 sines
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100

101

102

N
R

M
S

E

LSTM
Standard ESN
Filter ESN
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Figure 7: Performance of the multiple superimposed oscillations (MSO) task. Weights
are trained from time steps 101 to 400 and the NRMSEtest is calculated
from steps 401 to 700, averaged over 20 independent experiments. The LSTM
network results from [23] are compared to a standard ESN, to an ESN with
filter neurons and finally to an ESN with filter neurons and a delay&sum
readout. Note that the y-axis is logarithmic.

The parameter which has a big influence on the performance is the bandwidth of the
band-pass filters. A good value was found at a bandwidth of 0.5 octaves. Because of the
short number of training and washout samples, the maximum delay in the delay&sum
readout was restricted to 100 samples. Both learning algorithms, the D&S Learning
Algorithm A from Section 3.1 and the EM-based D&S Learning Algorithm B from Sec-
tion 3.2, performed similarly.

A second approach to learn the MSO task was proposed by Xue et al [31]. Since they
used a different training setup, no direct comparison to the previously presented results
for the LSTM network was possible. In [31] the same two sines problem

sin(0.2x) + sin(0.311x)

was simulated with an “decoupled echo state network with lateral inhibition”, which
basically consists of four almost independent ESN reservoirs with 100 neurons each,

5The normalized root mean square error (NRMSE) is defined in Appendix B.

15



where each one has a different spectral radius (0.6, 0.7, 0.8 and 0.9). They trained the
network from 600 time steps, after a washout period of 100 steps and the test error was
calculated from steps 701 to 1000. A mean square error6 of MSEtest = 3 × 10−3 was
achieved.
For the same washout, training and test data size, using the same ESN setup as before
with only 100 neurons (in contrast to 400 neurons in [31]), the simulations resulted in
an MSEtest of 3.49 × 10−14, averaged over 20 independent experiments7. When also
using a reservoir with 400 neurons, the MSEtest was even 3.04 × 10−20 and therefore
significantly lower as in [31].

4.2 Sparse Nonlinear System Identification

One useful property of the delay&sum readout is that the system is independent from a
time-shift of the input signals. For instance the nonlinear systems y(n) = x(n)x(n− 1)
and y(n) = x(n− 100)x(n− 101) really need the same complexity in the reservoir, be-
cause the reservoir runs autonomous and a delay&sum readout simply learns the delay.
Even better, with the D&S readout it is also possible to learn systems which depend on
different time regions, as for example y(n) = x(n)x(n− 50)x(n− 100), without the need
of very big reservoirs for just modeling the time shifts. In this subsection we will study
two examples, where long-term dependencies are important. They will show that the
delay&sum readout is able to vastly extend the short term memory of ESNs [12] and
that the proposed networks are well suited for a sparse nonlinear system identification
with long-term dependencies.

The first example is a modified version of the commonly known 10th-order nonlinear
autoregressive moving average (NARMA) system benchmark task, which was introduced
in [1] for a comparison of recurrent neural network architectures. Afterwards it was
analyzed in various papers about echo state networks, for instance in [14]. In [1] the
original system is given as

y(n) = 0.3y(n− 1) + 0.05y(n− 1)

[
10∑
i=1

y(n− i)

]
+ 1.5x(n− 10)x(n− 1) + 0.1.

We used a modified version, where every delay in the system equation is multiplied by
a factor τ to control the long-term dependence while keeping the essential structure

y(n) = 0.3y(n− τ) + 0.05y(n− τ)

[
10∑
i=1

y(n− iτ)

]
+ 1.5x(n− 10τ)x(n− τ) + 0.1. (13)

For instance by setting τ = 10 this results in a sparse NARMA system of order 100.
The same ESN setup as in [14] was employed8 and is given in Table 1. This system was

6The mean square error (MSE) is defined in Appendix B.
7The target signal was again scaled into a range of [−1, 1] and afterwards rescaled to the original range

for MSEtest calculation.
8Note that this ESN used additional squared state updates in the reservoir as introduced in [14].
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first driven with uniformly distributed white noise input between [0, 0.5] for a washout
time of 2000 time steps, then output weights and delays were calculated from the next
5000 steps. Aftwards the trained model was simulated with a new random input signal
and after discarding initial values, the test error was computed as a normalized root
mean square error9 from 2000 time steps. It was also helpful to use an additional bias
input, because Equation 13 has a constant offset of 0.1. The performance of an ESN
with and without a delay&sum readout, dependent on time lag τ , is shown in Figure 8.
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Figure 8: NRMSE development for a nonlinear system identification task of Equa-
tion 13 for different time lags τ . Each simulation was repeated ten times,
mean and standard deviation for ESNs with a setup as in Table 1 are plotted.
The figure shows the different error development for an ESN with and without
a delay&sum readout, using the simple and EM-based learning method.

This task demonstrates the possibility of a delay&sum readout, to vastly extend the
short term memory of ESNs. Without delays in the readout, the error increases fast.
Figure 8 shows also that for small τ , the simple D&S Learning Algorithm A performs
better than the EM-based D&S Learning Algorithm B. However, the error of the EM-
based method stays approximately constant when increasing τ . Simulations with IIR
filter neurons in the reservoir showed, that they are not useful for this task. Usually the
ESN output drifted away from the target signal and networks became unstable.

The best achieved performance in [1] was an NMSEtrain of 0.241 for the original
10th-order system10 (τ = 1), which corresponds to an NRMSEtrain ≈ 0.49. Note that

9The normalized root mean square error (NRMSE) is defined in Appendix B.
10According to [14], the authors of [1] miscalculated the NMSEtrain, because they used a formula for

zero-mean signals. In [14] the value was recalculated to NMSEtrain ≈ 0.241, which also agrees
with the plots given in [1]. For a definition of the normalized mean square error (NMSE) see
Appendix B.
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they calculated the error directly form training and not from testing data as done here.
One can see that the test error of a 100 neuron delay&sum ESN for a 100th-order sys-
tem (τ = 10) is still better than the best training error for the 10th-order system in
[1]11. When using bigger reservoirs and more training data it is even possible to further
increase the prediction performance.

As a second example, a nonlinear moving average (NMA) system is analyzed, which
incorporates information from different time regions. The system is given as

y(n) =

(
3∑
i=0

x(n− i)

)(
2∑
i=0

x(n− τ − i)

)(
2∑
i=0

x(n− 2τ − i)

)
(14)

where parameter τ is the time lag between the three groups in time.
Again the setup from Table 1 was used and the system was driven with uniformly

distributed white noise input between [0, 0.5]. After a washout period of 2500 time steps
the network was trained from the next 5000 + 2τ steps12. The trained model was then
simulated with a new random input signal and after discarding 100 + 2τ initial values
the test error was computed from 2000 time steps. Figure 9 shows the error development
dependent on time lag τ for different delay learning algorithms.

The interesting result is that as time lag τ becomes bigger than 10 (which means
a maximum delay of 22 steps in the system), the NRMSEtest of a D&S ESNs ap-
proximately remains at a value above 0.3, whereas the error of standard ESNs further
increases. Figure 9 show also, that the EM-based D&S Learning Algorithm B has a
more constant performance and a much smaller standard deviation than the simple
D&S Learning Algorithm A.

4.3 Mackey-Glass System

One classical benchmark task for time series modeling is the Mackey-Glass delay differ-
ential equation. It is given for instance in [11] as

ẏ(t) = α
y(t− τ)

1 + y(t− τ)β
− γy(t) (15)

and usually the parameters are set to α = 0.2, β = 10 and γ = 0.1. The system has a
chaotic attractor if τ > 16.8 and in most of the benchmarks τ is set to τ = 17 or τ = 30.
A plot for both settings is shown in Figure 10. In discrete time, the Mackey-Glass delay
differential equation can be approximated by

y(n+ 1) = y(n) + δ

(
0.2

y(n− τ/δ)
1 + y(n− τ/δ)10

− 0.1y(n)

)
(16)

11An additional unpublished result with a recurrent neural network trained as in [7] is mentioned in
[14], which reached a slightly better precision as the ESN setup from Table 1 for the τ = 1 task.
Unfortunately the exact error value is not given in [14].

12Training size depends on τ to be able to compare higher values of τ .
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Figure 9: NRMSE development for a nonlinear system identification task of Equa-
tion 14 for different time lags τ . Each simulation was repeated ten times,
mean and standard deviation for ESNs with a setup as in Table 1 are plotted.
The figure shows the different error development for an ESN with and without
a delay&sum readout, using the simple and EM-based learning method. Note
that the x-axis is logarithmic.

with a stepsize δ. Here the stepsize is set to the same value δ = 1/10 as in [11], [15], to
be able to compare the results13. The time series was afterwards rescaled into a range
of [−1, 1] by transforming it with yESN(n) = tanh(y(n) − 1) as done in [11], so that it
can be used to train ESNs with tanh activation functions in the reservoir.

The ESN setup is summarized in Table 1, which is almost the same as in [11], ex-
cept that they used leaky-integrator neurons. We chose standard units, because filter
neurons were not useful in this task. They would divide the reservoir in autonomous
sub-networks, which are able to learn multiple attractors. However, here only one single
attractor should be trained and therefore the performance with filter neurons in the
reservoir was worse than without.

Training sequences were generated from Equation 16 for τ = 17 and τ = 30 as in
[11]. In both cases first the network was trained from 2000 samples, after an initial
washout time of 1000 steps, then the same experiment was repeated for a training size
of 20000 samples. Furthermore a small noise term υ(n) in the state update Equation 1
was necessary during training to get stable attractors.

The mean squared error of a specific prediction horizon is used to compare the results
to other modeling techniques. A common value for the Mackey-Glass system is a 84

13Actually the Mackey-Glass sequence was generated from the same code as in [15], which can be
downloaded from http://www.faculty.iu-bremen.de/hjaeger/pubs/ESNforMackeyGlass.zip.
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Figure 10: 500 steps of a Mackey-Glass sequence for τ = 17 (left) and τ = 30 (right).
Both systems have a chaotic attractor and are standard benchmark tasks in
research on time series prediction.

or 120 steps prediction [11]. For instance to calculate an NRMSE84, the trained echo
state network is driven with a 1000 sample time series of different original Mackey-Glass
signals (teacher forcing) and afterwards simulated for 84 time steps to get the predicted
output ŷ(n+84). This value can be compared, after being re-transformed to the original
scale, with the original Mackey-Glass signal y(n + 84). To average over different initial
states, the same echo state network was run 100 times with new teacher forcing signals.
At each run i the predicted output ŷi(n+ 84) and target signal yi(n+ 84) were collected
and the NRMSE84 was calculated with

NRMSE84 =

√√√√ 1

100σ2

100∑
i=1

(yi(n+ 84)− ŷi(n+ 84))2 (17)

where σ2 is the variance of the original attractor signal.
The results for a 84 and 120 step prediction with τ = 30 are shown in Table 2. A

uniform noise term υ(n) was added during training in the state update equation. For
the 2000 step training sequence it was chosen between [−10−5, 10−5] and for the 20000
step training between [−10−8, 10−8]. Delays were calculated with the D&S Learning
Algorithm A, because the EM-based D&S Learning Algorithm B did not improve the
prediction performance. In [11] an NRMSE84 of 0.11 for τ = 30 was achieved, which
is comparable to the results reported here for standard ESNs with an NRMSE84 of
0.136. Figure 11 shows the further development of the error for τ = 17 and τ = 30,
up to a prediction horizon of 400 time steps. The advantage of a delay&sum readout is
bigger in the τ = 30 task, because the sequence seems to be much more difficult to learn.

For a comparison of the Mackey-Glass time series prediction to other techniques, one
has to consider [15], where it was shown that for the τ = 17 task ESNs vastly outperform
all other known methods. A bigger ESN with 1000 reservoir neurons was trained in that
paper and resulted in an NRMSE84 of 6.309×10−5, compared to a previously best result
of an NRMSE84 of 1.995×10−2. Results from various other techniques are summarized
in [8].
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Method NRMSE84 NRMSE120

Standard ESN, 1K+2K 0.136 0.217
D&S ESN, 1K+2K 0.0311 0.0486
Standard ESN, 1K+20K 0.0718 0.120
D&S ESN, 1K+20K 0.02 0.0317

Table 2: NRMSE of the Mackey-Glass sequence with τ = 30. Results are for a 84 and
120 step prediction and for a training length of 2000 (2K) and 20000 (20K) steps,
always with a washout time of 1000 (1K) samples. The error was calculated
from 100 independent runs.

A comparison is more interesting for the τ = 30 task. According to [15], the best
previous result was in [7], where a multilayer perceptron with output feedback was
trained with a refined version of backpropagation through time (extended Kalman filter
multi-stream training). They calculated a root mean square error14 for a 120 step pre-
diction and achieved an RMSE120 of 0.04. An ESN with a delay&sum readout achieves
an NRMSE120 of 0.0317, as shown in Table 2, which corresponds to an RMSE120 of
0.00891. When using bigger ESNs with 700 neurons and a refined version15 as in [15],
the error can be further reduced to an RMSE120 of 0.0072 for 2000 and an RMSE120

of 0.00265 for 20000 training steps, which improves the result in [7] by a factor of ap-
proximately 15.

4.4 Nonlinear Audio Prediction

This task presents a real-world audio prediction application of echo state networks and
compares the performance to alternative state-of-the-art models. In audio prediction
one tries to forecast future samples out of a given history horizon. Such methods are
necessary for instance in audio restoration, whenever a sequence of consecutive samples
is missing or when impulsive noise appears.

The scenario of this task, wich was defined in [2], is a wireless signal transmission,
where short dropouts can occur due to transmission problems. Short gaps with a length
of 2 to 6 milliseconds are assumed, the exact number and lengths of dropouts are shown
in Table 3. After each gap, the signal is predicted for further 200 samples and crossfaded
with the original one to avoid discontinuities at the transition points (see Figure 14).
Two different audio examples were taken from [2], both with a duration of five seconds
and a sampling rate of 44100 Hz. The first one is a short recording of a jazz quartet
and the second an orchestra composition by Beethoven. Short extracts of both, with
random dropouts as defined in Table 3, are shown in Figure 12.

The prediction performance of ESNs for both examples is compared to two commonly

14For a definition of the root mean square error (RMSE) see Appendix B.
15In the refined version ten independently created ESNs, 700 neurons each, were trained one after the

other, but in simulation the outputs of all 10 networks were averaged. The ten networks got also
the output feedback from the averaged value.
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Figure 11: NRMSE development of the Mackey-Glass sequence with τ = 17 (left) and
τ = 30 (right), for a prediction horizon up to 400 time steps. Delays and
weights of the readout were trained from 2000 samples. The performance
boost of a delay&sum readout is bigger in the τ = 30 task.

length (ms) length (samples) occurrences
2 88 9
3 132 6
4 176 5
5 220 4
6 264 3

Table 3: Dropout distribution for the nonlinear audio prediction task, taken from lis-
tening test three of [2]. The location was randomly chosen within an audio file
with a duration of five seconds and a sampling rate of 44100 Hz, resulting in
two percent of corrupted audio.

used, state-of-the-art alternative models: a pattern matching algorithm (PatMat) and a
linear autoregressive (AR) model.
Pattern matching algorithms [10][20] use a signal template, usually just before the
dropout, which is compared to areas in the past of the audio signal (the search win-
dow). Then the area within this search window with the highest similarity to the audio
template is selected and copied into the dropout region. Many different versions of pat-
tern matching algorithms exist and were evaluated in [2]. Here only the one with the
best prediction result, which is based on waveform differences and defined in Equation
6 of [10], will be compared to our approach.
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Figure 12: Extract from the two audio examples of the nonlinear audio prediction task.
The first one is a jazz quartet, the second an orchestra composition by
Beethoven. They were taken from [2] and dropouts, generated from a distri-
bution as presented in Table 3, are marked with dotted lines.

Additionally a linear autoregressive model [9], which is widely used for signal modeling,
was considered. The order of this linear predictor should be fixed to a value high enough,
so that complex signals can be represented. Here the order was set to 300. Furthermore
no audio signal is truly stationary, therefore it is necessary to train the model from a
relatively short block of samples and a block length of 3000 samples was found to be
optimal. Finally filter coefficients of the AR model were estimated with a least squares
approach based on those 3000 samples as described in Section 3.3.1 of [9].

For both audio examples a standard echo state network and an ESN with filter neurons
and a delay&sum readout was trained. The exact setup is shown in Table 1. Because
audio signals are not stationary, the training size is the most critical parameter in this
task. Standard ESNs were first driven by 500 samples and afterwards output weights
were calculated from the next 1000 steps. For D&S ESNs it was possible to use a bigger
washout time of 3000 samples and the readout was trained from the next 3000 time
steps.
A uniform noise term υ(n) was added during training in the state update equation, so
that no unstable networks were produced in simulations. For the standard ESN the
noise was drawn from [−0.0001, 0.0001] and for the D&S ESN with filter neurons from
[−0.0002, 0.0002]. Note that for standard ESNs the final error was lower, if the same
amount of noise was added in training as well as in testing, otherwise the output signal
energy decreased and the audible results were much worse.
For D&S ESNs, the maximum delay was restricted to 1000 samples, because the train-
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ing size should be kept small. Here the EM-based D&S Learning Algorithm B from
Section 3.2 performed a little bit better than D&S Learning Algorithm A and has been
used for the simulations and the resulting figures. Band-pass filters in the reservoir were
spaced logarithmically between 60 Hz and 11000 Hz, to contain all frequencies important
for the task. Furthermore a bandwidth of 2 octaves was found to be optimal.

The performance of all algorithms was benchmarked by calculating the NRMSE16 be-
tween model output and original signals, only from data in the dropout regions. Results
for both audio examples are presented in Figure 13. One can see that standard ESNs are
not able to produce good predictions, similar as in the multiple superimposed oscillations
task from Section 4.1, even when using much bigger reservoirs or more training data.
ESNs with filter neurons and a delay&sum readout showed in general a slightly better
performance than all other methods, especially in the second audio example. Prediction
examples from a delay&sum ESN, a standard ESN, a linear autoregressive model and
from the pattern matching algorithm are shown in Figure 14.
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Figure 13: NRMSE values calculated from the dropout regions of both audio examples
of the nonlinear audio prediction task. Standard ESNs were not able to
produce good predictions, but ESNs with filter neurons and a delay&sum
readout showed in general a slightly better performance than other described
state-of-the-art techniques.

5 Conclusion

We proposed two enhancements of echo state networks: general IIR filter neurons in
the reservoir and a delay&sum readout. Both methods overcome limitations of the
original formulation and drastically augment the possibilities of ESNs. Simulations with

16The normalized root mean square error (NRMSE) is defined in Appendix B.
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Figure 14: Example dropouts from both audio signals of the nonlinear audio prediction
task. The beginning and ending of missing data is marked with dotted lines.
After the dropout the signal is predicted for further 200 samples and cross-
faded with the original one to avoid discontinuities at the transition points.
The original signal is plotted in light gray, the predicted signal in dark gray.

benchmark datasets and audio signals demonstrated the usefulness of the developed
techniques.

With the proposed filter neurons in the reservoir, it was possible to model multiple
attractors with one single network. When using filters, “specialized” neurons are tuned
to different frequencies and more diverse echoes can evolve in the reservoir because not
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all units are coupled. The parameters of these filters are different for each neuron and
are fixed in advance, therefore no additional training is necessary and any readout, like
for instance a linear or a delay&sum readout, can be used with our suggested structure.
Simulations in Section 4 showed, that filter neurons are mandatory for the multiple
superimposed oscillations (MSO) and the nonlinear audio prediction task. Our presented
model was able to outperform state-of-the-art alternative algorithms.

The delay&sum readout adds trainable delays in the synaptic connections of readout
neurons. It vastly increases the short term memory capability of echo state networks
and is an efficient approach to handle long-term dependencies. We introduced two learn-
ing algorithms, which modify delays and weights of the readout neurons. This readout
was able to boost the performance in all presented simulations. Especially in the sparse
nonlinear system identification with long-term dependencies and the chaotic time series
prediction task (Mackey-Glass system), it was therefore possible to get an improvement
compared to all other known approaches.
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A Filter Parameters

Band-pass filters are implemented as second order IIR systems and are derived from
analog prototypes, which have been digitized using the bilinear transform [5] to finally
get the following parameters for coefficients a and b of Equation 5:

ω0 =
2πf0

fs
(18)

α = sin(ω0)sinh

(
ln(2)

2
φ

ω0

sin(ω0)

)
(19)

b0 = α, b1 = 0, b2 = −α,
a0 = 1 + α, a1 = −2cos(ω0), a2 = 1− α

(20)

where f0 is the center frequency of the band-pass filter, fs the samplingrate and φ the
bandwidth in octaves between -3dB cutoff frequencies. Figure 3 shows a plot of the here
presented band-pass filters.
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B Error Measures

Different error measures are used to be able to compare the results to values given
in literature. The mean square error (MSE) between a target signal ytarget(n) and a
generated signal y(n) for n = 0, . . . , N − 1 is calculated as

MSE =
1

N

N−1∑
n=0

(ytarget(n)− y(n))2 . (21)

Another possibility is to take the square root of the MSE, which results in the root
mean square error (RMSE)

RMSE =

√√√√ 1

N

N−1∑
n=0

(ytarget(n)− y(n))2. (22)

When using signals with different amplitudes, it is more meaningfull to normalize the
error with the variance of the target signal σ2

target, which is called the normalized mean
square error (NMSE)

NMSE =
1

Nσ2
target

N−1∑
n=0

(ytarget(n)− y(n))2 . (23)

Finally, by taking the square root of the NMSE, one gets the normalized root mean
square error (NRMSE)

NRMSE =

√√√√ 1

Nσ2
target

N−1∑
n=0

(ytarget(n)− y(n))2. (24)
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